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Abstract
The bound states in the (CdSe)Nw

(ZnSe)Nb
(CdSe)Nw

–ZnSe(001) symmetric double quantum
wells are investigated versus the well width (Nw) and the barrier thickness (Nb). A calculation
based on the sp3s∗ tight-binding method which includes the spin–orbit interactions is employed
to calculate the bandgap energy, quantum-confinement energy, and band structures. The studied
systems possess a vanishing valence-band offset (VBO = 0) in consistency with the well
known common-anion rule, and a large conduction-band offset (CBO � 1 eV), which plays an
essential role in the confinement of electrons within the CdSe wells. The biaxial strain, on the
other hand, plays another role in confining the holes at the interfaces (within the well regions)
and thus enhancing the radiative efficiency. The induced-strain energy is estimated to be
∼35 meV. More importantly, the results show that, for a fixed barrier thickness, the double
wells are able to confine a pair of bound states when they are very thin. By increasing the wells’
width (Nw), further, a new pair of states from the conduction-band continuum falls into the
wells every time Nw hits a multiple of four monolayers (more specifically, for
4n < Nw � 4(n + 1), the number of bound states is 2(n + 1), where n is an integer). On the
other hand, the barrier thickness (Nb) is shown to have no effect on the number of bound states,
but it solely controls their well-to-well interactions. A critical barrier thickness to switch off
these latter interactions is estimated to occur at about N crit

b � 9 (Lcrit
b � 25 Å). Rules governing

the variation of the quantum-confinement energy versus both barrier thickness (Nb) and well
width (Nw) have been derived. Our theoretical results are also shown to have excellent
agreement with the available experimental photoluminescence data.

1. Introduction

Over the last two decades, semiconductor physics has
developed towards studies of low-dimensional systems which
have been possible to synthesize due to the advent of modern
growth techniques, such as molecular-beam epitaxy (MBE).
Yet II–VI compound semiconductors have not undergone as
many investigations as those devoted to III–V compounds, for
which numerous applications have been realized, and have
long seemed prone to remain embryonic. However, the recent
achievement of p-type doping of ZnSe by MBE, followed
by the realization of II–VI based blue-light emitters [1],
has revived the interest in II–VI compounds. Moreover,
the constant progress in epitaxial crystal-growth techniques,

3 Author to whom any correspondence should be addressed.

such as the development of flow-rate-modulated beam epitaxy
and others, has made it possible to grow high-quality
semiconductor heterostructures even from heavily lattice-
mismatched materials (up to a lattice mismatch of ∼7%). As
long as the strained slabs are kept sufficiently thin, the novel
growth techniques have even explored the strain effect in the
engineering of the heterostructure’s bandgap to make it suitable
for specific optoelectronic applications.

Among the II–VI compound semiconductors, the family
Zn(Cd)Se(S) has attracted enormous interest for several
reasons: to mention a few, for instance, (i) it possesses
a variety of direct bandgaps covering most of the visible
spectrum ranging from near infrared to ultra-violet [2], (ii)
it is characterized by bright emissions and (iii) the lattice
constants of ZnS, ZnSe and CdSe respectively match those of
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Si, GaAs and InAs, which are popularly used as substrates.
Thus many of its elements are easy to use as buffers. As a
particularity in this family, ZnSe remains unique and broadly
used as a buffer on GaAs because it has also a direct and
large bandgap lying within the blue spectral region. When
ZnSe–CdSe are combined and fabricated in heterostructures,
they yield excellent emission and absorption properties suitable
for green–blue photonic devices [3]. Nonetheless, any
heterostructure made using elements of the family would be
hampered by the combined effects of lattice mismatch (which
is about 7% in case of CdSe/ZnSe) and cation diffusion at
the interfaces [4]. Strain can place severe restrictions on the
heterostructures that should be grown if lattice relaxation is to
be avoided. The strained layer will relax towards its unstrained
lattice parameter when it exceeds a certain critical thickness
dc, corresponding to the misfit dislocations to be nucleated
at the interfaces. Such a critical thickness was estimated by
Parbrook and co-workers [5] and Zajicek and co-workers [6]
to be about dc ∼ 1.3 nm. It is due to these restrictions that
nearly exclusively superlattices (SLs) mostly containing either
the alloy (Cd, Zn)Se or ultra-thin CdSe slabs have been studied
to avoid appearance of misfit dislocations.

The novel sophisticated epitaxial layer-growth techniques,
such as self-limiting monolayer epitaxy (SME) [6], have paved
the way for the fabrication of several new types of high-quality
semiconductor heterostructures. Among these structures,
single and double quantum wells (SQWs and DQWs) have
been attractive because of the interest in the investigation of
both fundamental physics properties [7] and tunable coherent-
light sources for optical communications [8], besides having
a good control on the charge distribution and the strain
morphology. Using the SME, Zajicek and co-workers have
succeeded in synthesizing high-quality CdSe single quantum
wells in ZnSe [6]. They reported high photoluminescence
peaks for CdSe wells of thicknesses 1–4 monolayers (MLs)
and deduced the evidence of appearance of misfit dislocations
in the case of a 5 ML single-well structure. In a subsequent
related experimental work, Yamaguchi and co-workers [9]
reported another successful growth of the CdSe SQWs in ZnSe
using just MBE. They also showed that their PL study gives
evidence for the localization of excitons to occur only due to
interface roughness and well-width fluctuations. In a more
recent work, Tu and co-workers [10] reported, for the first time,
a successful growth of strained Zn0.79Cd0.21Se/ZnSe double
quantum wells, grown by MBE on (001) GaAs substrate
and using contactless electro-reflectance (CER) at both 15
and 300 K. Their CER spectra were compared to the results
obtained using the envelope-function calculations, and the
conduction-band offset (CBO) was estimated to be large, about
0.67 ± 0.03. The coupling between the CdSe DQWs was not
in the scope of their investigation, as for many other studies.
Nevertheless, the coupling between CdSe/ZnSe self-assembled
quantum dots (QDs) appeared in some extended detail in the
work of Kim and co-workers [11]. The decoupling was shown
to be mainly controlled by the ZnSe barrier thickness.

On the theoretical side, several computational techniques
were used to calculate the band structures of semiconductor
heterostructures. However, many were limited either by

the system size and the applicability only for ground-state
properties (with underestimation of bandgap), such as the first-
principle methods, or the complete neglect of the band-mixing
effects, such as the effective-mass approaches (based on the
Kronig–Penney model) and the Hückel method. To overcome
such difficulties, we have used the sp3s∗ tight-binding (TB)
method with inclusion of spin–orbit interactions [12–14],
which are crucially important in the case of II–VI materials.
The TB method has proven its reliability to successfully
simulate the experimental data while it incorporates the
microscopic description of the material, where the point-group
symmetry of the system is included. Within the Slater–
Koster scheme [15], the TB method uses a small basis set
of atomic orbitals and this gives the method the ability to
deal with large systems; meanwhile, it takes into account the
band-mixing effects that are essential in the band structures
of systems such as superlattices, quantum wires, dots and
wells. It is worthwhile to emphasize, here, that such tasks can
also be tackled by empirical pseudo-potential (EPP) methods,
using either plane waves [16] or Bloch wavefunctions [17].
Such latter developed EPP methods achieved even the ability
to deal with large systems containing of the order of 2000
atoms in their computational supercells. In addition to the
computational task, we would emphasize one special striking
feature of II–VI common-anion heterostructures, which is the
vanishing or the very small value of the valence-band offset
(VBO). This makes the mixing of valence bands even more
essential, and the interplay between the biaxial strain (in
the case of lattice-mismatched structures) and the vanishing
VBO is of interest in its own right. We emphasize that
in the case of lattice-mismatched heterojunctions there are
ways to incorporate the biaxial strain effect, for instance, as
a perturbation posteriorly added to the Hamiltonian within the
TB scheme [13, 14].

In this present work we employ the sp3s∗ tight-
binding models, with inclusion of the spin–orbit inter-
actions, to investigate the electronic band structures of
the (CdSe)Nw

(ZnSe)Nb
(CdSe)Nw

–ZnSe(001) symmetric dou-
ble quantum wells (DQWs). We present the calculations of
the bandgap energy, quantum-confinement energy and band
structures of these DQWs versus the barrier thickness (Nb) and
well width (Nw). The aim of the work will be the following:
(i) to study the coupling behaviors of the symmetric DQWs and
its characters; (ii) to derive the rules governing the variation
of quantum-confinement energy versus both barrier and well
widths; (iii) to predict the transition from coupled to uncou-
pled DQWs and to estimate the critical ZnSe barrier thickness
for its occurrence and (iv) to show simulations of our theoreti-
cal results for some available PL data.

This paper is organized as follows. The next section
gives to some extent the details of the TB models and method.
In section 3, we discuss our obtained theoretical results and
compare them to some available PL data. The last section
summarizes our main findings and conclusions.

2. Computational method

The empirical TB method has been successfully used in several
areas of solid state physics for many years [12–15], [18–20].

2



J. Phys.: Condens. Matter 20 (2008) 165205 N Tit and I M Obaidat

Within the TB framework, atomic levels and electronic-
interaction integrals are actually taken as adjustable parameters
in order to fit the experimental or the first-principle band
structures. Vögl et al [18] have proposed a nearest-neighbor
TB description of IV and III–V semiconductors using the sp3s∗
basis set. In their work, the actual Hamiltonian is replaced
with a pseudo-Hamiltonian which involves five orbitals per
atom: s and 3p orbitals to describe the sp3 hybridization
and one excited s∗ orbital, whose function is to provide a
better description of the lower unoccupied energy levels (low-
lying conduction bands (CBs)). The first extension to further
incorporate the spin–orbit coupling within the TB framework
was done for II–VI materials, even prior to Vögl’s work, by
Kobayashi et al [12], namely on CdTe and HgTe. Of course,
in these latter materials, the spin–orbit splitting is quite strong
and its successful incorporation into the TB Hamiltonian has
paved the way for a huge field of applications, especially in
the area of II–VI materials. In addition to this extension, one
reliable method to further include the strain effects in the TB
calculations has been published by Bertho et al [13], where the
strain has been treated as a perturbation posteriorly added to
the TB Hamiltonian.

Here, in this paper, we use the empirical TB parameters,
published by Olguin and Baquero [19] (shown in table 1),
which yield excellent fittings to the experimental bandgaps
and effective masses (see table 2, where the overall agreeable
comparison to experimental data [21] is shown. Other methods
yield results of effective masses very much scattered; see,
for instance, [22]). The TB Hamiltonian matrix elements
are expressed in a basis of symmetrically orthonormalized
atomic orbitals (so-called Löwdin orbitals [20]). Moreover, in
the supercell calculations, the validity of two main points is
assumed: (i) the macroscopic theory of elasticity (MTE) [23] in
evaluating the supercell atomic structure and (ii) the problem of
energy reference between the two constituents is sorted out by
taking the VBO into account [14] (for instance, in our present
case, CdSe on-site energies are shifted up by the VBO since the
valence-band (VB) edge of this constituent is always higher in
energy than that of ZnSe when the interface is formed between
them). Furthermore, it is worthwhile to mention that here in all
the situations (unless indicated otherwise) we used VBO = 0,
which was shown/justified in our previous work [24] to yield
excellent fittings to PL data of CdSe/ZnSe SLs, besides the fact
that this is also consistent with the famous common-anion rule.

With the inclusion of the spin–orbit interaction, the sp3s∗
TB Hamiltonian is expressed in the Löwdin basis set as

Table 2. The calculated bandgap energies (Eg in eV) and carrier
effective masses (m∗

e , m∗
HH and m∗

LH in units of free-electron mass
and along the [100] direction) are compared to the experimental data
of [21].

Compound Eg m∗
e m∗

HH m∗
LH Eg

a m∗
e

a m∗
h

a

CdSe 1.78 0.126 0.609 0.158 1.75 0.11 0.44
ZnSe 2.83 0.443 0.774 0.344 2.83 0.16 0.60

a Experimental data due to [21].

follows:

Hso =
∑

i,μ

Ei,μ|i, μ〉〈i, μ|

+
∑

i,μ; j,ν(i �= j)

| j, ν〉Uiμ, jνei�k(�r j −�ri )〈i, μ| (1)

where i and j refer to atoms at the respective positions �ri and
�r j ; μ and ν refer to one of the ten orbitals on the atom i and
j respectively; Ei,μ is an on-site (diagonal) energy element of
orbital μ of site i and Uiμ, jν is the overlap integral between
the indicated respective orbitals. For further details of the
expressions of the overlap integrals, we refer the reader to
reference [12], whereas the TB parameters are obtained from
the work of [19].

It is worthwhile to mention that, before diagonalizing the
Hamiltonian (1), it is extremely important to take care about
crystal symmetry considerations; namely the existence of an
inversion symmetry with respect to the planar-spin-averaged
charge density (see the appendix).

The Bloch wavefunction |nk〉, of course, should
diagonalize the TB Hamiltonian and is written as

Hso|nk〉 = Enk |nk〉 (2)

where n is a band index, k is a wavevector, usually taken
either from within the irreducible wedge of the Brillouin zone
if the aim is to calculate the density of states or along the
high-symmetry lines if the aim is to calculate the bands,
and Enk is the eigenenergy corresponding to the eigenvector
(Bloch wavefunction). In our particular case, both constituents
possess direct bandgaps at the � point. So, with the exception
of band structure calculations, the bandgap energy (Eg) and
the quantum-confinement energy (EQ) are calculated at the
� point.

Last, but not least, we will also give a brief description
of how the quantum-confinement energy is calculated. So,
as the heterojunction made of CdSe/ZnSe is considered to be
of type I, then the total charge-carrier quantum-confinement

Table 1. The empirical sp3s∗ TB parameters, with the inclusion of the spin–orbit coupling, for ZnSe and CdSe are in units of eV. The same
notation as in [12] is used. The lattice constants (a0) are in Å.

Compound Ea
s Ea

p Ec
s Ec

p Ea
s∗ Ec

s∗ λa λc

ZnSe −12.427 1.782 0.047 5.520 7.850 0.194 0.194 0.019
CdSe −10.167 1.034 1.080 7.646 6.027 3.962 0.143 0.067

Compound a0 4Vss 4Vxx 4Vxy 4V ac
sp 4V ac

ps 4V ac
s∗p 4V ac

ps∗

ZnSe 5.65 −6.502 3.309 5.412 1.137 −5.802 3.266 −1.870
CdSe 6.05 −2.892 3.013 5.730 2.16 −5.656 2.116 −2.217
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Figure 1. Theoretical results of variation of the lowest ten spin-degenerate CB eigenenergies and the highest six spin-degenerate VB
eigenenergies of a (CdSe)Nw

(ZnSe)Nb
(CdSe)Nw

–ZnSe(001) DQW versus (a) barrier thickness Nb with Nw = 1, (b) well width Nw with
Nb = 1 and (c) well width Nw with Nb = 4. VBO = 0 was taken in all these calculations. The region between the dashed horizontal lines
corresponds to the CdSe well’s energy region.

energy can be defined as EQ = Eg(SL) − Eg(CdSe),
where Eg(SL) is the bandgap energy of the whole system
obtained from the supercell calculation, and Eg(CdSe) is the
bandgap energy of the pure CdSe in its strained configuration
corresponding to the one existing in the supercell. Another
method which would yield the same result, and which as a
matter of fact was used in our present work, is as follows: for
the (CdSe)Nw

(ZnSe)Nb
(CdSe)Nw

–ZnSe(001) DQW structure,
we define the quantum-confinement energy as

EQ = Eg(Nw, Nb) − Eg(Nw → ∞, Nb) (3)

where Eg(Nw, Nb) is the bandgap energy of the supercell
which contains the two symmetric wells of Nw ML of CdSe
each, and Eg(Nw → ∞, Nb) is the hypothetical bandgap
of the same previous structure but where the wells’ widths
are infinitely broadened in order to let the ground state
asymptotically touch the bottom of the wells. Computationally,
we have found that it is sufficient to achieve this convergence
by just letting Nw → 50, which is easily affordable in our
TB method.

The supercell (ZnSe)20(CdSe)Nw
(ZnSe)Nb

(CdSe)Nw

(ZnSe)20(001), with periodic boundary conditions and con-
taining 2(40+2Nw+Nb) atoms, and strained to ZnSe substrate,
is used to simulate the symmetric (CdSe)Nw

(ZnSe)Nb
(CdSe)Nw

–
ZnSe (001) double-quantum-well systems. Moreover, as both
constituents have direct bandgap energies at the �-point, all the
calculations (except the bands) are carried out at the Brillouin
zone center. The results will be discussed next.

3. Results and discussion

Figure 1 displays the results of six valence-band and ten
conduction-band eigenenergies calculated at the center of
the Brillouin zone for the (CdSe)Nw

(ZnSe)Nb
(CdSe)Nw

–ZnSe
double quantum well systems. All the displayed eigenstates
are spin degenerate and the VB edge of the bulk constituents
is taken as an energy reference. VBO = 0 is taken in all the
calculations and consequently the CBO is estimated to be large
(CBO � 1 eV) and forms a well for electrons, as shown by

the region in between the two horizontal dashed lines, located
at the energy range 1.80 � E � 2.80 eV. Panel 1(a) shows
the variation of the above eigenenergies versus the barrier
thickness (Nb) when the wells’ width is kept very small and
equal to one monolayer (Nw = 1). Panel 1(a) shows that
the ultra-thin CdSe wells are able to confine one pair of (spin-
degenerate) bound states and these two states are strongly split
when the barrier thickness (Nb) is small. This pair gets close
in energy as the barrier thickness increases until they merge
to have the same energy as a consequence of their well-to-
well interaction being switched off; however, they become
split in space into two independent single quantum wells.
The critical barrier thickness corresponding to the coupled-
to-uncoupled transition is estimated to occur at about N crit

b �
9 ML (i.e. Lcrit

b � 25 Å). The bandgap energy of the ultra-thin
uncoupled/isolated wells (when Nb > 9) is found to be Eg =
2.60 eV, which corresponds to a quantum-confinement energy
EQ = 0.80 eV. In the same panel 1(a), one may also notice the
split of top valence-band states especially when Nb is small as
a result of the compressive biaxial strain applied on the CdSe
wells. The CdSe-related heavy-hole (HH) state represents
the top of VB states as the wells are compressively strained.
On the other hand, in panels 1(b) and (c), the variations of
the eigenenergies versus the wells’ width are shown for two
different barrier thicknesses, Nb = 1 and 4 respectively.
While the VB states are shown to keep behaving similarly to
panel 1(a), the CB states behave in a completely different way.
Namely, in panel 1(b), when the wells are thin (Nw � 4),
only one pair of (spin-degenerate) bound states exists in the
wells. As the wells’ width (Nw) increases, a new pair among
the CB continuum states falls into the wells every time Nw hits
a multiple of four (precisely, for 4n < Nw � 4(n + 1) the
number of (spin-degenerate) bound states is 2(n + 1), where
n = 0, 1, 2, 3, . . . , etc). This rule might be attributed to the
inversion-symmetry requirement, which was imposed on the
wavefunctions in order to be elegible to form a new venter
inside the CdSe well. It seems that the smallest possible space
to accommodate the smallest venter must be of two-unit-cell
length along the c-direction. A further remark about panel 1(b)
is that the noticeable band-mixing (crossing), occurring among
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Figure 2. The planar spin-averaged wavefunction-squared amplitudes of the highest seven VB states and lowest nine CB states are shown
along the c-axis. The dashed lines corresponding to the CB-edge profile are shown as guides to the eye. The three panels correspond to
(CdSe)Nw (ZnSe)Nb

(CdSe)Nw –ZnSe(001) DQWs with (a) Nw = 4, Nb = 4, (b) Nw = 12, Nb = 4 and (c) Nw = 4, Nb = 12.

the continuum CB states above the wells as Nw is varied,
indicates that the states falling into the wells must have certain
specifically selected symmetry. This is similar to the mixing
effects reported in [17]. By comparing panel 1(b) to panel 1(c),
one can clearly notice that the pair of (spin-degenerate) states
falling into the wells in panel 1(c) is much closer in energy to
each other. This is the case because in panel 1(c) the barrier
is thicker and the wells are more separated so that the split
energy is smaller. Meanwhile, one also notices that all the
pairs of bound states shown in both panels 1(b) and (c) are
split in energy, an indication that the wells are interacting
(coupled) as long as the barrier thickness is still smaller than
Lcrit

b (i.e. Nb < 9).
Figure 2 shows the wavefunction-squared amplitudes of

the spin-averaged eigenstates (|�|2 = 1
2 (|�↑|2 + |�↓|2)),

calculated at the � point, versus the Z -direction (layer by layer)
for seven VB states and nine CB states. The dotted curve at the
bottom of each panel displays the profile of the CB edge. First,
we discuss the behaviors of the holes (top VB states). One
common trend between all panels of figure 2 is the localization
of holes at the interfaces, i.e. in the neighborhood of the wells,
as an effect of the biaxial strain imposed on the CdSe wells.
This is similar to the PPM results reported by Gell and co-
workers [25], who illustrated the existence of confined states in
the absence of band offset. Panel 2(a), where Nw = 4 ML and
Nb = 4 ML, shows the confinement of three holes (V1–V3),

whereas the other lower VB states are basically delocalized and
just constituting the VB continuum (this particular case may be
considered as similar to the alloying regime; see the next figure
for more details). It seems that the biaxial strain has induced
small wells. (There are basically four hidden wells, each at one
interface and hereafter named ‘h-wells’, see their effects in the
other panel as well. Note that these h-wells are not necessarily
square in shape.) Panel 2(b) gives more details: if the wells’
thicknesses are simultaneously increased to Nw = 12 ML, then
the h-wells have enough strain energy to confine four holes
(V1–V4) at the interfaces, and four other states (V5–V8, note
that V8 is not shown here) are also competing to enter the h-
wells but just could not make it as these ‘hidden’ interface h-
wells are small in both energy and space. So these four VB
states (V5–V8) remain frustrated and pending at the gates of
the h-wells. The rest of the VB states (below V8, not shown)
are found just to be delocalized. Panel 2(c) also shows the
localization of the top four holes (V1–V4) at the interfaces
whereas the next VB states (V5–V8) are also competing to
enter the h-wells but just got repelled as there is no space in
there to accommodate them. The other VB states (below V8
not shown here) are found to be all extended.

Second, in figure 2, we discuss the behaviors of CB states,
which are really shown to follow completely different profiles.
Their wells are large (of depth equal to CBO � 1 eV; there
are basically two wells for the electrons, named hereafter ‘e-
wells’). They are mainly sensitive to the variation of the wells’
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Figure 3. The band structures of (CdSe)Nw
(ZnSe)Nb

(CdSe)Nw
–ZnSe(001) DQWs are shown along the �Z high-symmetry line for

(a) Nw = 4, Nb = 4; (b) Nw = 12, Nb = 4; (c) Nw = 4, Nb = 12. The VB edge of the supercell is taken as an energy reference and the
sub-panels show the VBs and CBs separately for the purpose of clarity.

width (Nw). For instance, when Nw = 4 ML, the wells
are able to confine only one pair of (spin-degenerate) bound
states (see C1 and C2 in panels 2(a) and (c)); the other upper
CB states are basically delocalized as constituting part of the
continuum states. In panel 2(b), the wells’ width is increased
to Nw = 12 ML while Nb is kept constant, Nb = 4 ML;
three pairs of bound states have entered the e-wells. It is
worth to emphasize, here, the successful implementation of
the inversion symmetry inside the TB Hamiltonian (see the
appendix), such that the electronic bound states within the
CdSe wells, shown in figure 2, look well behaved, as can be
predicted by the application of quantum theory on a single
particle in a finite quantum well (i.e., C1 and C2 have one
venter inside each well as the ground states, C3 and C4 have
two venters inside each well as the first excited states; C5 and
C6 have three venters inside each well as the second excited
states). More importantly, the two lowest CB continuum states
at the top of the wells (just above C6 in panel 2(b)) look as
if they are more localized in the ZnSe regions away from the
wells. This is another quantum mechanical effect imposed by
the wells’ symmetry rules to prohibit these latter states landing
in the wells. So these two latter states become like frustrated
states, being at the threshold to be allowed to enter the wells;
more precisely, they just get reflected from the wells’ region as
rejected. Thus, the two CB states (just above C6 in panel 2(b))
keep pending at the gates of the e-wells. In contrast to this,
the other upper CB states are delocalized as part of the CB
continuum states.

Figure 3 displays the band structures corresponding to
the three structures of figure 2 in respective panels. Only

one high-symmetry line (�Z ) is displayed to study the
confinement effects and both the CBs and VBs are shown but
in different respective sub-panels. All the shown bands are spin
degenerate. The VB edge is taken as an energy reference and
similar energy scales are used for all three panels to ease the
comparison. The scale of the VB sub-panels is small for the
purpose of clarity. As discussed and shown in figure 1, the e-
wells’ energy range is from 1.8 to 2.8 eV as the CBO � 1 eV.
First we discuss the CB sub-panels: panel 3(a), where Nw =
4 ML and Nb = 4 ML, shows the existence of one pair of
(spin-degenerate) bound states as clearly displayed by the flat
bands (C1 and C2). Such confinement behavior corroborates
what was demonstrated before in figures 1 and 2. The bound
states are split in energy as an effect of the active well-to-well
interaction as the barrier is thin (Nb < 9 ML). In panel 3(c), the
enlarging of the barrier thickness (to Nb = 12 ML) can only
affect the split energy, not the number of bound states. The
pair of states merges, in terms of energy, into one degenerate
state (panel 3(c)), but is split again in the direct space into
two independent wells. Panel 3(c) confirms that the wells are
decoupled and also corroborates the fact that Nb > 9 ML
corresponds to a situation of decoupled wells. In panel 3(b),
the wells’ width is increased to Nw = 12 ML while the barrier
thickness is kept similar to panel 3(a) (Nb = 4 ML), so that the
wells are able to accommodate three pairs of (spin-degenerate)
bound states (C1–C6).

One common feature between the three CB sub-panels of
figure 3 is the fact that almost all the CB states above the wells’
region (E � 2.8) are shown to be dispersive because they are
delocalized and constituting part of the CB continuum. One
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Figure 4. The bandgap energy Eg (full circles) and
quantum-confinement energy EQ (open circles) of the CdSe–ZnSe
DQWs are shown versus barrier thickness (Nb). Nw = 4 was taken.
The inset shows the variation of ln(�Eg/E0

g) in solid circles and
ln(�EQ/E0

Q) in open circles versus Nb.

further remark about the CB sub-panel 3(b) is that the higher-
energy pairs of localized states within the CdSe wells are a
bit more split in energy because the wells are still coupled (as
the barrier is thin Nb < 9 ML); furthermore, the split energy
increases when going from the lower-energy to the upper-
energy bound states as an effect of the increase of the coupling
strength. Now about the VB sub-panels of figure 3: 10 VBs are
displayed and confirm that the top three VBs (V1–V3), at least,
in all the panels are localized as their corresponding bands
are ‘flat’. Furthermore, in panel 3(a), the lower bands (V4
and below) are shown to be dispersive and should constitute
part of the VB continuum. Some bands (such as V4 and V5
in panel 3(a)) exhibit some inter-band mixing, which reveals
the active coupling between the wells (almost the same as the
alloying regime). The V3 state seems to have an energy at
the level of the gate of the h-wells (35 meV), below which
the VB states are extended. In the VB sub-panel 3(b), where
the well width is increased to Nw = 12 ML while the barrier
thickness is kept the same as in panel 3(a) (Nb = 4 ML),
the energy confinements of the holes reduce in their strain-
induced wells (h-wells) which, in turn, could accommodate
even more hole bound states (see V1–V4, all being ‘flat’).
In the VB sub-panel 3(c), where the well width is similar to
panel 3(a) (Nw = 4 ML) and the barrier thickness is increased
to Nb = 12 ML, the wells are completely decoupled and the
interfaces could accommodate just four hole bound states (V1–
V4 in panel 3(c)). The states V5 and V6 are located at the gate
of the h-wells, in terms of energy (31–35 meV), below which
VB states are extended. Thus, the confinement behaviors of
the holes also reveal the formation of induced wells (hidden)
at the interfaces to accommodate holes at the well regions.
The estimated depth of these h-wells is about 35 meV. It is
interesting to note that in the input we have used VBO =

1.6

2

2.4

2.8

3.2

124 8 16 20

E
g 
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b
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b
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Figure 5. The bandgap energies of a CdSe–ZnSe SQW (full circles),
a DQW with Nb = 1 (full squares), and a DQW with Nb = 4 (open
squares) are shown versus well width (Nw). Inset (a) shows the
log–log variation of EQ, whereas inset (b) shows the semi-log
variation of EQ.

0, and as a result of the biaxial strain exerted on the CdSe
wells we obtained a small strain-induced VBOind(� 35 meV),
which is of the order of strain energy. This phenomenon
is also consistent with the findings of the pseudo-potential
calculations reported in [25].

To investigate the rules governing the variation of either
the bandgap energy (Eg) or the quantum-confinement energy
(EQ), we first display in figure 4 the variation of both of these
latter quantities versus the barrier thickness (Nb), while the
wells’ width is kept constant (Nw = 4). By increasing the
barrier thickness (Nb), both Eg and EQ (in full circles and
open circles respectively) increase to reach their corresponding
values obtained for the separate single quantum wells (SQWs).
Beside the fact that the tendency to this is so rapid, one expects
the variation to be like an exponential one which follows the
form of evanescent wavefunctions in penetrating the barrier.
So, in the inset of figure 4, we plotted both ln(�Eg/E0

g)

and ln(�EQ/E0
Q) versus the barrier thickness (Nb), where in

�Eg = Eg − E0
g , Eg and E0

g correspond to the bandgap
energies of the DQW and SQW respectively; and similarly in
�EQ = EQ − E0

Q, EQ and E0
Q correspond to the quantum-

confinement energies of the DQW and SQW, respectively. It
turned out that the curves shown in the inset are really linear,
confirming that the variation is indeed exponential. So, we
deduced that one can write the following rules:

EDQW
g = ESQW

g

[
1 − exp

(
− Lb

ξb

)]
(4)

EDQW
Q = ESQW

Q

[
1 − exp

(
− Lb

ξb

)]
(5)

where Lb = 1
2 Nba0(ZnSe). The two curves in the insets are

shown to be parallel, having the same slope, so both Eg and EQ

are found to possess the same characteristic length ξb � 6.5 Å.
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In figure 5, we display the variation of the SQW (in full
circles), the DQW with Nb = 1 (in full squares), and the DQW
with Nb = 4 (in open squares) versus the wells’ width (Nw).
The ground state in all the three cases seems to fall down to
the bottom of the well as these latter get wider. Of course,
the ground state will never reach the bottom of the well as an
optimum kinetic energy is needed to keep the particle moving
back and forth in the wells. At first, one would think that
the quantum-confinement energy should decay in a power-law
form similar to the case of an infinite well (where EQ ∼ 1/L2

w).
So, in inset (a), we have shown a log–log plot, namely ln(EQ)

versus ln(Nw), to access the validity of the power-law behavior.
It turned out that this latter curve is not linear, so that EQ does
not follow a power-law variation (i.e. EQ �= ALα

w). In inset (b),
moreover, we have plotted ln(EQ) versus Nw. The three curves
are found to be linear and parallel. So, by comparing the two
insets of figure 5, one can easily conclude that the confinement
energy is behaving more likely as an exponential decay rather
than a power-law. Its variation is

EQ = E0
Q exp

(
− Lw

ξw

)
(6)

where Lw = 1
2 Nwa0(CdSe); EQ and E0

Q are the quantum-
confinement energies of the SQW (or DQW) corresponding
to the well widths of Nw monolayers and Nw = 1 ML
respectively. The characteristic length is found to be the same
as being dependent solely on the well’s composition and equal
to ξw � 13 Å. This value is about twice ξb, indicating that
the variation here is smoother. Moreover, this ξw value is half
of the critical barrier thickness corresponding to the symmetric
DQW decoupling. Thus, ξw may correlate to the localization
length of the e/h-pair ground bound states.

On the experimental side, in order to avoid the appearance
of misfit dislocations, the CdSe slabs must be kept thinner
than 5 ML. For this reason, Zajicek and co-workers [6] have
reported their photoluminescence results on MBE-grown CdSe
SQWs of thicknesses less than 5 ML. As a matter of fact,
they have grown two kinds of samples: (i) samples containing
only one single well of CdSe (of thickness ranging from 1 to
3 ML) embedded inside ZnSe and called thereafter ‘SQW’
samples (the data are shown in figure 6 by full circles)
and (ii) one sample containing five multiple quantum wells
(MQWs) separated by identical ZnSe slabs of 300 Å thickness
each, whereas the CdSe wells have thicknesses ranging from
1 to 5 ML in the respective order when moving from the
substrate along the c-axis. The data are shown in figure 6
by open squares. Our calculated bandgap energy for the
(CdSe)Nw

–ZnSe(001) SQW structures using both VBO =
0 and 0.3 eV is shown in figure 6 by dotted and solid
curves respectively. We emphasize that the latter VBO value
corresponds to the maximal bandgap energy that can be
obtained using our TB models, and by coincidence it is also
close to the one (0.33 eV) reported by Ren and co-workers [26],
estimated using the state-of-the-art ab initio technique. For
the three independent SQW samples, the theoretical results
(solid line) agree with PL data (•) but a bit shorter with an
energy difference of no more than 54 meV, such as in the case
of 3 ML SQW-sample. This small energy shortage might be
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Figure 6. Photoluminescence data due to [6] obtained for a
CdSe–ZnSe SQW (full circles) and MQW (open squares) versus well
width Nw. The dotted and solid curves correspond to the TB results
obtained for the SQW using the respective VBO = 0 and 0.3 eV.

due to two reasons: the neglect of exciton effects in the TB
calculations from the theoretical side and/or the problem of
cation diffusion [4] at the interfaces from the experimental side.
For the MQW sample containing five separate SQWs (where
Nw = 1–5 ML), there is an excellent agreement with our
theoretical results (dotted line) obtained with VBO = 0. Only
the experimental SQW of Nw = 5 ML has a PL peak of low
intensity and low energy lying below what the theory predicts.
It is agreed by both theory and experiment that this latter
SQW is considered, as it obviously contain misfit dislocations,
and using this sample the critical well width corresponding
to the nucleation of interface defects was estimated to be
Ncrit

w = 5 ML, which is consistent with the prediction of
Parbrook et al [5].

4. Conclusions

The electronic structures of the (CdSe)Nw
(ZnSe)Nb

(CdSe)Nw
–

ZnSe(001) symmetric DQWs were investigated using the sp3s∗
tight-binding method where the strain and spin–orbit effects
are included. The bandgap energy, quantum-confinement
energy and band structures were studied versus the barrier
thickness (Nb) and well width (Nw). The results may be
summarized as follows.

(i) Consistent with the common-anion rule, VBO = 0 was
taken. Nonetheless, the results have shown that the CdSe-
related HH still represents the VB top states and it always
gets localized at the interfaces (near the well region),
which yields high radiative efficiency. Moreover, the
biaxial strain is able to form four small induced wells
(named h-wells, each of depth of the order of the strain
energy, ∼35 meV) to localize the top four holes at the
interfaces (near the well regions).

8
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(ii) The barrier thickness (Nb) has no effect on the number of
electron bound states within the e-wells (each of the two
wells is of depth CBO � 1 eV), but rather controls their
well-to-well interaction. The transition from coupled to
uncoupled DQWs is estimated to occur at a critical ZnSe
barrier thickness of 9 ML (i.e. of about 25 Å).

(iii) The wells’ width is the only parameter to control the
number of electron bound states existing in the e-wells.
The increase of well width (Nw) by multiples of four
would admit a new pair of electron bound states to
enter each time. The smallest bound-state wavefunction’s
venter requires a length of two unit cells along the c-axis
to be accommodated. This was justified by a symmetry-
selection rule. For the wells of thickness 4n + 1 � Nw �
4(n + 1) the number of bound states would be 2(n + 1),
where n = 0, 1, 2, 3, . . . etc (an integer).

(iv) The rules governing the variation of quantum-confinement
energy versus barrier thickness and well width were
derived. Both variations were found to be exponentials.

(v) Our theoretical results of bandgap energies were found
to be in excellent agreement with the available PL data
of SQW and MQW, and indeed justify the reliability of
our DQW predictions. Besides, these agreements with
experiments have showed the relevance of our theoretical
work in predicting the structural qualities and optical
properties of the experimental samples.

(vi) As the experimental SQWs cannot be thicker than 4 ML,
if misfit dislocations are to be avoided, then one should
expect them to contain only one pair of electrons at a time
regardless of the barrier thickness.
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Appendix

For the cases of an SQW as well as a symmetric DQW, each
structure possesses a point-group symmetry of high order,
called hereafter inversion symmetry (as far as the planar-spin-
averaged charge density (ρ(z) = |�(z)|2) is concerned). For
instance, in the case of the Nw = 1 and Nb = 1 DQW, shown
in Figure A.1, the inversion center of ρ(z) would be the cation
(Zn) located in the barrier. It should be further emphasized
that in the case of Nb being odd the midway cation (Zn) of the
barrier should be considered as an inversion-symmetry center,
whereas in the case of Nb being even the midway anion (Se)
of the barrier should be considered as an inversion-symmetry
center. In figure A.1, the well width is Lw = 1

2 Nwa0(CdSe),
and the barrier thickness is Lb = 1

2 Nba0(ZnSe), where
a0(ZnSe) = 5.65 Å and a0(CdSe) = 6.78 Å are the lattice
constants corresponding to these respective materials as exist
in the strained configurations of the supercell.

It is very important that such physical inversion
symmetry should be translated into the Hamiltonian matrix

… Zn Se Zn Se Zn Se Cd  Zn Se Cd Se Zn Se Zn Se Zn Se…

LL

Inversion-Symmetry

Lb

Se 

LwLw

Center

Figure A.1. CB-edge profile corresponding to the structure of a
symmetric (CdSe)Nw (ZnSe)Nb

(CdSe)Nw –ZnSe(001) DQW with
Nw = Nb = 1. The arrows are used as an indication of the order of
the basis set of orbitals on each atom. Note that this order is reversed
for the atoms above the inversion-symmetry center (i.e. to the right
of the center in the figure).

representation. The way to do this is to change the order of
the Hamiltonian basis set at the level of single atoms, namely
by flipping the order of atomic orbitals of all the atoms located
above the inversion-symmetry center. For instance, as shown
in figure A.1, if the atoms below the inversion-symmetry
center have arrows directed to the right then this indicates
that the order of states goes as |S1〉 = |s,↑〉, |S2〉 = |s,↓〉,
|S3〉 = | 3

2 ,+ 3
2 〉, |S4〉 = | 3

2 ,+ 1
2 〉, |S5〉 = | 3

2 ,− 1
2 〉, |S6〉 =

| 3
2 ,− 3

2 〉, |S7〉 = | 1
2 ,+ 1

2 〉, |S8〉 = | 1
2 ,− 1

2 〉, |S9〉 = |s∗,↑〉,
and |S10〉 = |s∗,↓〉; then all the atoms above the inversion-
symmetry center should have arrows directed to the left,
indicating the reversal order of orbitals: i.e. their basis sets
should start from |S10〉 and end at |S1〉 orbitals. For the atom
considered as an inversion center, it would not really matter in
what order its orbitals were put.

Finally, it is worthwhile to mention that the implementa-
tion of the inversion symmetry is necessary to obtain well be-
haved eigenwavefunctions as physically expected, but has no
effect on the eigenenergies.
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